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Abstract

We present a preliminary study of list mode likelihood reconstruction of images

for a rectangular positron emission tomograph (PET) speci�cally designed to image

the human breast. The prospective device consists of small arrays of scintillation

crystals for which depth of interaction is estimated. Except in very rare instances the

number of annihilation events detected is expected to be far less than the number of

distinguishable events. If one were to histogram the acquired data, most histogram

bins would remain vacant. It therefore seems natural to investigate the eÆcacy of

processing events one at a time rather than processing the data in histogram format.

From a reconstruction perspective, the new tomograph presents a challenge in that the

rectangular geometry leads to irregular radial and angular sampling, and the �eld of

view extends completely to the detector faces. Simulations are presented which indicate

that the proposed tomograph can detect 8 mm diameter spherical tumors with a tumor

to background tracer density ratio of 3:1 using realistic image acquisition parameters.

Spherical tumors of 4 mm diameter are near the limit of detectability with the image

acquisition parameters used. Expressions are presented to estimate the loss of image

contrast due to Compton scattering.
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Figure 1: Device Geometry. Four banks of detectors, each composed of 8�8 arrays of

crystals de�ne the geometry of the Positron Emission Mammography (PEM) camera. Each

crystal is expected to distinguish depth of interaction to 8 di�erent levels. The tomograph

has 172 million possible lines of response (LOR).

1 Introduction

We present a preliminary study of list mode likelihood reconstruction of images for a positron
emission tomograph (PET) speci�cally designed to image the human breast. The prospec-
tive device consists of small arrays of scintillation crystals for which depth of interaction
is estimated. Except in very rare instances the number of annihilation events detected is
expected to be far less than the number of distinguishable events. If one were to histogram
the acquired data, most histogram bins would remain vacant. It therefore seems natural to
investigate the eÆcacy of processing events one at a time rather than processing the data in
histogram format.

The methods we refer to as list mode likelihood have been used for many years to analyze
experiments in the �eld of high energy physics [1] and were suggested for PET image recon-
struction in 1983 [2]. Renewed interest in list mode likelihood PET image reconstruction is
re
ected by several recent publications [3, 4, 5, 6, 7].

A paradigm is presented which accurately accounts for detection probabilities in the
absence of Compton scatter either in the �eld of view or the detectors. It is able to compute
the high resolution (unscattered) portion of the system matrix for a particularly irregular
sampling geometry which includes depth of interaction information.

2 Geometry of the Device

We give here an idealized model of the PET camera for which list mode likelihood reconstruc-
tion is anticipated to be advantageous [8]. Individual crystals of scintillator (see Figure 1)
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are 3�3�30 mm3 and modules consist of 8�8 arrays of crystals. The tomograph consists
of four banks of modules, two banks of 3�3 modules left and right and two banks of 3�4
modules top and bottom. The imaging region is therefore 72�72�96 mm3. Each bank is
placed in coincidence with the other three, giving rise to 657 combinations of two modules
placed in coincidence with one another. In addition to the 64 crystals in each module, the
system will be able to distinguish the depth of interaction of the annihilation photon within a
crystal to about one part in eight, so that 512 di�erent signatures for a detection in a module
are possible. Histogramming these data without loss of information will require 657�5122 =
172 million bins. Linear voxel sizes of 3 mm or 2 mm will result in 18,432 or 62,208 voxels,
respectively.

3 Likelihood Reconstruction for List Mode Data

Although the likelihood function for list mode data can easily be formulated from �rst
principles [3], we give here a derivation which follows naturally from an expression for the
likelihood function for statistically independent, Poisson distributed, histogram data. This is
a natural progression in medical imaging in which data are ordinarily acquired in histogram
format and statistical reconstruction techniques have been used to reconstruct statistically
eÆcient medical images.

If the expected value for the kth bin is denoted by �k then the probability of observing
nk events in the kth histogram bin is given by the Poisson distribution, P�k(nk), and the
probability of observing the entire histogrammed dataset (of K bins) is given by the product

KY
k=1

P�k(nk) =
KY
k=1

e��k�nk
k

nk!
:

The reconstruction problem is often posed as that of �nding the distribution of radioisotope
which would come \closest" to projecting the observed data. In maximum likelihood recon-
struction \close" means likely or having high probability. The expected data can be written
as

�k =
MX
j=1

Fkj�j = (F�)k

where �j is the amplitude of the jth basis function used to model the radioisotope density
and M is the number of basis functions. F links a representation of the distribution of
radioisotope with the expected number of histogrammed events in each bin. It is called
the \system matrix" or the projection matrix and contains all of the physics of the data
acquisition process. If the basis functions are normalized such that �j is equal to the expected
number of radioactive disintegrations from the jth basis function, then Fkj is the probability
that a random event from the jth basis function is detected in the kth bin. We use cubic
voxel basis functions to model the radioisotope distribution.

We can now express the probability of the observed histogrammed data as a function of
the distribution of radioisotope

L(n1; n2; � � � ; nKj�1; �2; � � � ; �M) =
KY
k=1

1

nk!
e�(F�)k(F�)nk

k
:
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This expression is also called the likelihood function with respect to our parameterization of
the distribution of radioisotope. The natural logarithm is usually easier to work with, and
therefore we write

L(�) =
KX
k=1

[nk ln(F�)k � (F�)k]

where the dependence on the parameters is explicit, and the constant term, ln(nk!), has been
dropped since it will not enter into the maximization of L with respect to f�1; �2; � � � ; �Mg.

For list mode maximum likelihood we convert the �rst term to a sum over events instead
of histogram bins. We also reverse the order of summation in the second term. If the bin
number for the ith event is denoted by ki we have

L(�) =
NX
i=1

ln(F�)ki �
MX
j=1

"j�j ; N =
KX
k=1

nk ; "j =
KX
k=1

Fkj

where N is the total number of detected events, and "j is the eÆciency of detecting events
from the jth voxel.

A well known but slowly converging method to maximize L(�) is the expectation max-
imization (EM) algorithm [9]. For list mode data the EM algorithm uses the following
iterative stepping to obtain a solution:

�̂n+1
j

=
�̂n
j

"j

NX
i=1

Fkij

(F �̂n)ki
:

4 Regularization

In order to regularize the EM reconstruction we have used a technique described by Levitan
and Herman [10]. The idea is to penalize the likelihood function with our prior knowledge
of the nature of the image by using a Gaussian prior whose logarithm is of the form

�
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(�� ��)TH(�� ��)

so that � can be coaxed to be close to �� with some weighting given by H. The scalar 
 is an
overall strength parameter for the regularization. This is the appropriate penalty function
for a Gaussian prior, ��, with H equal to the inverse of the covariance matrix of ��, and

 = 1.

If the matrix H is diagonal the EM iterative process can easily be carried out since the
set of equations to be solved in the M-step is not coupled. After substituting the identity
matrix for H, the new stepping procedure is given by

�̂n+1
j

=
1

2
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NX
i=1

Fkij

(F �̂n)ki

This procedure may be appropriate for imaging distributions which are expected to be uni-
form or when a prior estimate of the distribution is obtained by a simpler approach such as
�ltered backprojection.
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5 The System Matrix

To model the physics of the data acquisition process we start with a simple model of two
small in�nitely dense \black" detectors placed in coincidence and separated by a distance r.
If the distance between the detectors is large compared to their size, then the solid angle of
the second detector seen from the �rst is given by


1 =
�a2
r2

where �a2 is the area of the second detector projected on a plane perpendicular to the line
between them. Therefore the probability of detecting events from a point source placed
between the detectors and very close to the �rst one is given by 
1 divided by 2�, the solid
angle of the half sphere. To get the expected number of coincident events observed from
a unit intensity uniform planar source we multiply by �a1, the projected area of the �rst
detector

�a1
1

2�
=

�a1�a2
2�r2

:

To a very good approximation the coincident event rate from a uniform planar source placed
between the detectors perpendicular to the line joining them is independent of the location
of the source along this line. Therefore the expected number of events observed by the two
detectors is given by

# events (black) = e�
R
�o(`) d`

�a1�a2
2�r2

Z
�(`) d`

where the expression
R
�(`) d` denotes the line integral of the source density between the two

detectors,
R
�o(`) d` denotes the line integral of the linear attenuation coeÆcient between the

two detectors to account for self-attenuation, and we have assumed that the source density, �,
and the attenuation coeÆcient, �o, vary slowly transverse to the line between the detectors.

Now taking account of the fact that the detectors are not in fact \black", but have linear
attenuation coeÆcient � and therefore a probability e��w of penetrating to the depth w

before interacting, the probability of an annihilation photon being detected in the thickness
�w at the depth w is given by

e��(w��w=2) � e��(w+�w=2) � ��we��w

where the approximation is valid for small values of ��w, i.e. thin detectors. Now the
expected number of events observed by two small volumes of detector placed in coincidence
and each embedded at some depth within a larger amount of detector material can be
calculated using the formula

# events = �2�w1�w2e
��w1e��w2e�

R
�o(`) d`

�a1�a2
2�r2

Z
�(`) d`

= e��(w1+w2)e�
R
�o(`) d`

�2�v1�v2
2�r2

Z
�(`) d`

where w1 and w2 are the interaction depths in the two detector volumes �v1 and �v2,
respectively (with �vi = �ai�wi). Neglecting many confounding physical e�ects of positron
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tomography (scatter, photon acollinearity, positron range, etc.) this equation is exact for
in�nitesimal volumes �v1 and �v2.

We now put this into the context of the model of radioisotope distribution using normal-
ized cubic voxels of volume V . The density integral is then given by

Z
�(`) d` =

MX
j=1

`kj
�j

V

where `kj is the length, within the jth voxel, of the line of response corresponding to the kth

bin. Then we have

�k = e��(w1k+w2k)e�
R
�o(`) d`

�2v2

2�r2
k
V

MX
j=1

`kj�j

and

Fkj =
�2v2

2�V

0
@`kje��(w1k+w2k)e�

R
�o(`) d`

r2
k

1
A :

Implementation of this form of the density integral gives an approximation of the probability
which is only true for two in�nitesimal detector volumes each of volume v. The correct
implementation of this approach takes the average value of the term in the large brackets
for all combinations of in�nitesimal volumes of each of the two �nite detectors taking part
in the coincident detection. In addition, we now model self-attenuation within the imaging
volume as a continuous uniform medium of attenuation coeÆcient �o, so that

Fkj =
�2v2

2�V

*
`kje

��(w1k+w2k)e��o(rk�w1k�w2k)

r2
k

+
:

where h�i denotes the average value alluded to above. This model for self-attenuation assumes
that the attenuating medium completely �lls the �eld of view. This is the worst-case scenario
which can easily be relaxed, and a convex boundary for the attenuating medium can be
determined from the emission data when the assumption is not satis�ed.

Our implementation uses an approach which equally subdivides each relatively large
detector into a set of smaller volumes, thus better approximating the in�nitesimal detector
volumes assumed in the discrete approximation. A detector is divided equally along each
dimension so that a division level of D results in a set of D3 equal subvolumes. Connecting
each subvolume between two detectors therefore results in D6 line integrals for each detector
pair. This approach is intended to model the response function of the physical system of
detectors described in Section 2 under the simplifying assumptions of a uniform attenuator in
the �eld of view and the absence of confounding physical e�ects, especially Compton scatter.

6 Expected Count Rates and Data Set Sizes

In order to estimate background rates for this analysis, we assume a subject weighing 70 kg,
and an injection of 1 mCi (37 MBq) of [F-18]-labeled deoxyglucose (FDG) which is uniformly
distributed within the body. This activity density within our 72�72�96 mm3 �eld of view
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and an imaging time of 60 sec gives about 16 million disintegrations within the imaging vol-
ume. The combined geometric and physical detection eÆciency of the model outlined above
is 14.5%, including self-attenuation, and results in about 2.3 million detected coincident
events. (Histogrammed data would require 172 million bins.)

We have investigated density integral models with a single line integral between the
depth decoded portions of the scintillator crystals and models which average many line
integrals taken between more �nely divided subvolumes of the depth decoded portions of the
scintillator crystals. On-the-
y calculation of Fkj results in 10 �sec per event per iteration
of the EM algorithm for each line integral in the model (23 sec per iteration for 2.3 million
events). If the nonzero factors Fkj are stored on disk, an average of 350 bytes are required for
each event, and iteration speed is 20 �sec per event for single line integrals. These numbers
are dominated by disk speed and increase to 1000 bytes per event and 40 �sec per event,
respectively, for integral models which average many lines. Results are averages of 2 mm
and 3 mm voxel tests, and timing was done on an SGI Octane 225 MHz MIPS R10000. For
2 mm voxels, the 64 line integral model appears necessary to avoid artifacts in the calculated
eÆciency map.

7 Simulations

Simulation results focus on the tomograph's ability to detect small tumors in data obtained
from a typical breast examination. For simulations of acquired data, a linear attenuation
coeÆcient of 0.01 mm�1 was used for self-attenuation and a linear attenuation coeÆcient
of 0.1 mm�1 was used for crystal penetration. The e�ects of photon Compton scatter were
not modeled, neither for scatter in the �eld of view nor in the detectors. Photons which
interact in any way in the �eld of view are assumed undetected, and photons which interact
in the detectors are assumed to do so once in a single well-de�ned depth decoded portion of a
scintillator crystal. (We discuss the e�ects of Compton scatter in the next section.) Results
show that despite the irregular sampling for this tomograph and a �eld of view that extends
to the detector faces, high resolution, isotropic reconstructions may be obtained throughout
the entire imaging volume.

Figure 2 shows the expected eÆciency of the device using 3 mm voxels. Seen in 2(a), the
expected eÆciency ranges from about 0.15 to 0.40 in the central plane, and decreases to about
0.01 in the outer planes. Calculations of the eÆciency using the analytically de�ned system
matrix and 1, 64 and 729 line integrals per detector line of response (LOR) are seen in 2(b),
2(c) and 2(d) respectively. In these images, the results are shown as the di�erence image
between the Monte Carlo estimation and the analytically calculated results. Comparison of
these results show that for the 3 mm voxel case, the center voxel eÆciencies are accurate
using any of the models, but accurate estimation of corner voxel eÆciencies requires a model
using more line integrals. This e�ect is seen more dramatically for the case of 2 mm voxels.
As seen in Figure 3, comparison of the Monte Carlo images with the di�erence images of
3(b), 3(c) and 3(d) show that artifacts are present throughout the volume if a multiple line
integral model is not used.

Reconstructions of a 
ood phantom with 16 million total disintegrations within the imag-
ing �eld of view are presented in Figure 4. The images represent the reconstruction of ap-
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Figure 2: PEM EÆciency (3 mm voxels). Detection eÆciency obtained via Monte Carlo is

presented in (a). Absolute di�erence images between the Monte Carlo result and analytically

calculated eÆciency using 1, 64, and 729 line integrals for each LOR are shown in (b), (c),

and (d) respectively. Comparison of these images and the relative scale of the errors reveals

that the simpler models produce errors principally at the corners.
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Figure 3: PEM EÆciency (2 mm voxels). Detection eÆciency obtained via Monte Carlo

is presented in (a). Absolute di�erence images between the Monte Carlo result and the

analytically calculated eÆciency using 1, 64, and 729 line integrals for each LOR are shown

in (b), (c), and (d) respectively. For the 2 mm voxel case, rather severe artifacts are present

using the single line integral method (b). It appears that at least a 64 line integral technique

is required to prevent large errors.
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Figure 4: Flood Phantom Reconstruction. Flood phantom reconstruction using 2 mm

voxels and 729, 64 and 1 line integrals for each LOR are shown in (a), (b) and (c) respectively.

Reasonably 
at reconstructions are obtained in all cases, though considerably more noise

and errors in the corner voxels are present in case (c).

proximately 2.3 million detected events. For all reconstructions, the penalty function of the
Gaussian prior was set such that 
=�� = 0:1, and the EM algorithm was run until the penal-
ized likelihood function reached a maximum. The coeÆcient of the uniform prior, ��, was
set to the total number of detected events divided by the number of voxels and corrected
upward to re
ect the average eÆciency of 14.5% within the �eld of view. Results using the
729 line integral model are seen in 4(a), and for comparison, the reconstruction using the 64
and 1 line integral model are shown in 4(b) and 4(c). As was seen in the calculated eÆciency
volumes of Figures 2 and 3, the model using more line integrals per LOR produces images
with fewer artifacts, especially at the corners of the imaging volume. The reconstructions
are reasonably uniform, and have similar qualitative noise characteristics. Particularly en-
couraging is the fact that for 2 mm voxels, reconstruction artifacts do not appear when using
a voxel size less than the size of the detectors.

To test the ability of the tomograph and reconstruction algorithm to detect well-de�ned
tumors in a typical breast examination, a mathematical phantom of seven 8 mm diameter
spheres was created. The phantom on a noiseless background is seen in Figure 5(a). List
mode events from the spherical phantom were added to the 
ood phantom background
such that the radiotracer density ratio between the nodules and the background was 3:1.
This dataset was then reconstructed using the same EM algorithm as described previously.
Comparison of the images produced using 729, 64, and 1 line integral model, shown in 5(b),
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Figure 5: Nodule Simulation (8 mm spheres). Seven 8 mm spherical nodules simulating

breast tumors are seen against a noiseless background in a 2 mm voxel volume in (a).

Voxel intensities are proportional to the number of events generated and detected from the

spheres. Reconstructions using a simulated tumor to background tracer density ratio of 3:1

reveal that the nodules are easily detectable using either the 729, 64 and 1 line integral/LOR

models, seen in (b), (c), and (d) respectively.

5(c), and 5(d), respectively, reveal that simulated tumors of this size and contrast are easily
detected using any of the models. Here, the 729 and 64 line integral models appear to
perform equally.

Results of a more challenging simulation are presented in Figure 6. Here, the diameter of
the spherical nodules was decreased from 8 mm to 4 mm. Reconstructed results show that
even in this case, for which the number of events arising from the spheres is reduced by a
factor of eight, the nodules are usually detectable under the idealized assumptions we have
made concerning scatter backgrounds. Note that even though the two spheres in the outer
planes may be diÆcult to see in this case, the simulated imaging parameters here are quite
conservative, and either an increase in patient dose or imaging time will improve contrast to
noise ratios.
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Figure 6: Nodule Simulation (4 mm spheres). Seven 4 mm spherical nodules against a

noiseless background are seen in (a). Voxel intensities are proportional to the number of

events generated and detected from the spheres. Reconstruction (2 mm voxels and 729 line

integrals) of the phantom with a target to background tracer density ratio of 3:1 shows that

even the 4 mm spheres are detectable when scatter is not included in the simulation (b).

8 Compton Scatter

An important physical e�ect which we have neglected in this investigation is the detection of
photons which have Compton scattered. In our model of self-attenuation we have assumed
that photons which interact in any way in the �eld of view remain undetected. Actually
many of these scattered photons escape the imaging volume and are well above the energy
threshold of the detectors. Similarly, we have assumed that any photon which interacts in the
detectors does so in a single well-de�ned depth decoded portion of a scintillator crystal which
we can unambiguously determine. Some of these photons also Compton scatter, giving rise
to ambiguities which preclude determination of the �rst interaction point or which deposit
energy below the detector threshold and are undetected. These e�ects weaken our analysis,
but there are some general statements which can be made about the consequences of scatter
in this application.

We consider three types of Compton scattering which a�ect the conclusions of this work:
photons scatter in the �eld of view and are detected, photons scatter in the detectors and
preclude precise determination of a single interaction point, and photons scatter in the
detectors but are undetected. For the physiological conditions assumed in this investigation
(isolated lesions in a uniform background of activity) we have performed a Monte Carlo
calculation of the average background due to these types of scatter. This calculation uses the
appropriate energy-dependent cross-sections for the interaction of photons in water (in the
�eld of view) and in lutetium oxyorthosilicate (commonly referred to as LSO, the scintillator
used in our device). (Using these linear attenuation coeÆcients, the average eÆciency for
the simpli�ed detection model is reduced to 13.8% instead of 14.5% as quoted above.) For
an energy threshold of 270 keV, we have found that: the fraction of annihilations which
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have a photon scatter in the �eld of view and are detected (case 1) is 0.040, the fraction of
annihilations for which photons have not scattered in the �eld of view but have a photon
scatter in the detector and are detected in the wrong location (case 2) is 0.040, and the
fraction of annihilations for which photons have not scattered in the �eld of view, have both
photons interact in the detectors, but have a photon remain undetected (case 3) is 0.052.

Scatter within the �eld of view appears to arise from a broad spatial distribution, and for
purposes of approximating backgrounds we assume that annihilations from isolated sources
which belong to case 1 will simply be indistinguishable from the uniform background of
our physiological model. Scatter within the detectors which is detected have a much more
limited spatial distribution [11], but for the purposes of this exercise we assume the worst
case scenario that annihilations from isolated sources which belong to case 2 will also be
indistinguishable from the uniform background of our physiological model. Therefore the
average detection fraction of 0.138 for isolated sources (simpli�ed detection model) is reduced
by 0.040 (case 2) and 0.052 (case 3) to give 0.046. For annihilations originating in the
background, 0.138 is increased by 0.040 (case 1) and reduced by 0.052 (case 3) to give 0.126.
(The loss of events from isolated sources which contribute to the background is small and
has been neglected in the estimation of background events.)

From these considerations we see that the e�ective relative eÆciency of background events
to target events is about 0.126/0.046 = 2.7 so that a target to background activity ratio of
3:1 is e�ectively reduced to (3-1)/2.7+1:1 = 1.7:1. The total number of events acquired will
be reduced by 9% (0.126/0.138 = 0.91). Therefore the most signi�cant e�ect of scatter for
this application is an e�ective loss of contrast. It is expected that scatter in the �eld of view
can be appropriately modeled in the system matrix. Accounting for inter-detector scatter in
the system matrix will result in better contrast than we have pessimistically assumed here.

9 Summary

We have outlined a problem in nuclear medicine which may be amenable to analysis using the
method of list mode maximum likelihood reconstruction. A methodology has been discussed
which is expected to yield desirable imaging properties and well understood quantitative
measures.

A paradigm has been presented which accurately accounts for detection probabilities in
the absence of Compton scatter either in the �eld of view or the detectors. It is able to
compute the high resolution (unscattered) portion of the system matrix for a particularly
irregular sampling geometry which includes depth of interaction information.

Simulations show that 8 mm diameter spherical nodules are easily detected for an ex-
tremely conservative scanning paradigm: very low patient dose (1 mCi injection of FDG)
short imaging time (1 min) and realistic target to background radiotracer density ratio (3:1).
Spherical nodules 4 mm in diameter are visible but more diÆcult to detect in this imaging
environment, but a factor of 20 increase in detected events can easily be achieved by doubling
the very low patient dose and increasing the imaging time to 10 min. Reconstruction time
for this case would grow approximately linearly with the size of the list mode data �le.

Approximations have been presented which describe an e�ective reduction in the target
to background activity ratio due to the e�ects of Compton scatter.
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